Metamath Proof Explorer


Theorem prtlem11

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Assertion prtlem11 B D C A B = C ˙ B A / ˙

Proof

Step Hyp Ref Expression
1 eceq1 x = C x ˙ = C ˙
2 1 rspceeqv C A B = C ˙ x A B = x ˙
3 elqsg B D B A / ˙ x A B = x ˙
4 2 3 syl5ibr B D C A B = C ˙ B A / ˙
5 4 expd B D C A B = C ˙ B A / ˙