Metamath Proof Explorer


Theorem prtlem11

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Assertion prtlem11 BDCAB=C˙BA/˙

Proof

Step Hyp Ref Expression
1 eceq1 x=Cx˙=C˙
2 1 rspceeqv CAB=C˙xAB=x˙
3 elqsg BDBA/˙xAB=x˙
4 2 3 imbitrrid BDCAB=C˙BA/˙
5 4 expd BDCAB=C˙BA/˙