Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rodolfo Medina
Partitions
prtlem11
Next ⟩
prtlem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
prtlem11
Description:
Lemma for
prter2
.
(Contributed by
Rodolfo Medina
, 12-Oct-2010)
Ref
Expression
Assertion
prtlem11
⊢
B
∈
D
→
C
∈
A
→
B
=
C
∼
˙
→
B
∈
A
/
∼
˙
Proof
Step
Hyp
Ref
Expression
1
eceq1
⊢
x
=
C
→
x
∼
˙
=
C
∼
˙
2
1
rspceeqv
⊢
C
∈
A
∧
B
=
C
∼
˙
→
∃
x
∈
A
B
=
x
∼
˙
3
elqsg
⊢
B
∈
D
→
B
∈
A
/
∼
˙
↔
∃
x
∈
A
B
=
x
∼
˙
4
2
3
syl5ibr
⊢
B
∈
D
→
C
∈
A
∧
B
=
C
∼
˙
→
B
∈
A
/
∼
˙
5
4
expd
⊢
B
∈
D
→
C
∈
A
→
B
=
C
∼
˙
→
B
∈
A
/
∼
˙