Metamath Proof Explorer


Theorem prter2

Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypothesis prtlem18.1 ˙=xy|uAxuyu
Assertion prter2 PrtAA/˙=A

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙=xy|uAxuyu
2 rexcom4 vAzzvp=z˙zvAzvp=z˙
3 r19.41v vAzvp=z˙vAzvp=z˙
4 3 exbii zvAzvp=z˙zvAzvp=z˙
5 2 4 bitri vAzzvp=z˙zvAzvp=z˙
6 df-rex zvp=z˙zzvp=z˙
7 6 rexbii vAzvp=z˙vAzzvp=z˙
8 vex pV
9 8 elqs pA/˙zAp=z˙
10 df-rex zAp=z˙zzAp=z˙
11 eluni2 zAvAzv
12 11 anbi1i zAp=z˙vAzvp=z˙
13 12 exbii zzAp=z˙zvAzvp=z˙
14 10 13 bitri zAp=z˙zvAzvp=z˙
15 9 14 bitri pA/˙zvAzvp=z˙
16 5 7 15 3bitr4ri pA/˙vAzvp=z˙
17 1 prtlem19 PrtAvAzvv=z˙
18 17 ralrimivv PrtAvAzvv=z˙
19 2r19.29 vAzvv=z˙vAzvp=z˙vAzvv=z˙p=z˙
20 19 ex vAzvv=z˙vAzvp=z˙vAzvv=z˙p=z˙
21 18 20 syl PrtAvAzvp=z˙vAzvv=z˙p=z˙
22 16 21 biimtrid PrtApA/˙vAzvv=z˙p=z˙
23 eqtr3 v=z˙p=z˙v=p
24 23 reximi zvv=z˙p=z˙zvv=p
25 24 reximi vAzvv=z˙p=z˙vAzvv=p
26 22 25 syl6 PrtApA/˙vAzvv=p
27 df-rex zvv=pzzvv=p
28 19.41v zzvv=pzzvv=p
29 27 28 bitri zvv=pzzvv=p
30 29 simprbi zvv=pv=p
31 30 reximi vAzvv=pvAv=p
32 26 31 syl6 PrtApA/˙vAv=p
33 risset pAvAv=p
34 32 33 imbitrrdi PrtApA/˙pA
35 1 prtlem400 ¬A/˙
36 nelelne ¬A/˙pA/˙p
37 35 36 mp1i PrtApA/˙p
38 34 37 jcad PrtApA/˙pAp
39 eldifsn pApAp
40 38 39 imbitrrdi PrtApA/˙pA
41 neldifsn ¬A
42 n0el ¬ApAzzp
43 41 42 mpbi pAzzp
44 43 rspec pAzzp
45 eldifi pApA
46 44 45 jca pAzzppA
47 1 prtlem19 PrtApAzpp=z˙
48 47 ancomsd PrtAzppAp=z˙
49 elunii zppAzA
50 48 49 jca2r PrtAzppAzAp=z˙
51 prtlem11 pVzAp=z˙pA/˙
52 51 elv zAp=z˙pA/˙
53 52 imp zAp=z˙pA/˙
54 50 53 syl6 PrtAzppApA/˙
55 54 eximdv PrtAzzppAzpA/˙
56 19.41v zzppAzzppA
57 19.9v zpA/˙pA/˙
58 55 56 57 3imtr3g PrtAzzppApA/˙
59 46 58 syl5 PrtApApA/˙
60 40 59 impbid PrtApA/˙pA
61 60 eqrdv PrtAA/˙=A