Metamath Proof Explorer


Theorem prter2

Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypothesis prtlem18.1 ˙ = x y | u A x u y u
Assertion prter2 Prt A A / ˙ = A

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙ = x y | u A x u y u
2 rexcom4 v A z z v p = z ˙ z v A z v p = z ˙
3 r19.41v v A z v p = z ˙ v A z v p = z ˙
4 3 exbii z v A z v p = z ˙ z v A z v p = z ˙
5 2 4 bitri v A z z v p = z ˙ z v A z v p = z ˙
6 df-rex z v p = z ˙ z z v p = z ˙
7 6 rexbii v A z v p = z ˙ v A z z v p = z ˙
8 vex p V
9 8 elqs p A / ˙ z A p = z ˙
10 df-rex z A p = z ˙ z z A p = z ˙
11 eluni2 z A v A z v
12 11 anbi1i z A p = z ˙ v A z v p = z ˙
13 12 exbii z z A p = z ˙ z v A z v p = z ˙
14 10 13 bitri z A p = z ˙ z v A z v p = z ˙
15 9 14 bitri p A / ˙ z v A z v p = z ˙
16 5 7 15 3bitr4ri p A / ˙ v A z v p = z ˙
17 1 prtlem19 Prt A v A z v v = z ˙
18 17 ralrimivv Prt A v A z v v = z ˙
19 2r19.29 v A z v v = z ˙ v A z v p = z ˙ v A z v v = z ˙ p = z ˙
20 19 ex v A z v v = z ˙ v A z v p = z ˙ v A z v v = z ˙ p = z ˙
21 18 20 syl Prt A v A z v p = z ˙ v A z v v = z ˙ p = z ˙
22 16 21 syl5bi Prt A p A / ˙ v A z v v = z ˙ p = z ˙
23 eqtr3 v = z ˙ p = z ˙ v = p
24 23 reximi z v v = z ˙ p = z ˙ z v v = p
25 24 reximi v A z v v = z ˙ p = z ˙ v A z v v = p
26 22 25 syl6 Prt A p A / ˙ v A z v v = p
27 df-rex z v v = p z z v v = p
28 19.41v z z v v = p z z v v = p
29 27 28 bitri z v v = p z z v v = p
30 29 simprbi z v v = p v = p
31 30 reximi v A z v v = p v A v = p
32 26 31 syl6 Prt A p A / ˙ v A v = p
33 risset p A v A v = p
34 32 33 syl6ibr Prt A p A / ˙ p A
35 1 prtlem400 ¬ A / ˙
36 nelelne ¬ A / ˙ p A / ˙ p
37 35 36 mp1i Prt A p A / ˙ p
38 34 37 jcad Prt A p A / ˙ p A p
39 eldifsn p A p A p
40 38 39 syl6ibr Prt A p A / ˙ p A
41 neldifsn ¬ A
42 n0el ¬ A p A z z p
43 41 42 mpbi p A z z p
44 43 rspec p A z z p
45 eldifi p A p A
46 44 45 jca p A z z p p A
47 1 prtlem19 Prt A p A z p p = z ˙
48 47 ancomsd Prt A z p p A p = z ˙
49 elunii z p p A z A
50 48 49 jca2r Prt A z p p A z A p = z ˙
51 prtlem11 p V z A p = z ˙ p A / ˙
52 51 elv z A p = z ˙ p A / ˙
53 52 imp z A p = z ˙ p A / ˙
54 50 53 syl6 Prt A z p p A p A / ˙
55 54 eximdv Prt A z z p p A z p A / ˙
56 19.41v z z p p A z z p p A
57 19.9v z p A / ˙ p A / ˙
58 55 56 57 3imtr3g Prt A z z p p A p A / ˙
59 46 58 syl5 Prt A p A p A / ˙
60 40 59 impbid Prt A p A / ˙ p A
61 60 eqrdv Prt A A / ˙ = A