Metamath Proof Explorer


Theorem prtlem400

Description: Lemma for prter2 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem13.1 ˙ = x y | u A x u y u
Assertion prtlem400 ¬ A / ˙

Proof

Step Hyp Ref Expression
1 prtlem13.1 ˙ = x y | u A x u y u
2 neirr ¬
3 1 prtlem16 dom ˙ = A
4 elqsn0 dom ˙ = A A / ˙
5 3 4 mpan A / ˙
6 2 5 mto ¬ A / ˙