Metamath Proof Explorer


Theorem prtlem16

Description: Lemma for prtex , prter2 and prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem13.1 ˙=xy|uAxuyu
Assertion prtlem16 dom˙=A

Proof

Step Hyp Ref Expression
1 prtlem13.1 ˙=xy|uAxuyu
2 vex zV
3 2 eldm zdom˙wz˙w
4 1 prtlem13 z˙wvAzvwv
5 4 exbii wz˙wwvAzvwv
6 elunii zvvAzA
7 6 ancoms vAzvzA
8 7 adantrr vAzvwvzA
9 8 rexlimiva vAzvwvzA
10 9 exlimiv wvAzvwvzA
11 eluni2 zAvAzv
12 elequ1 w=zwvzv
13 12 anbi2d w=zzvwvzvzv
14 pm4.24 zvzvzv
15 13 14 bitr4di w=zzvwvzv
16 15 rexbidv w=zvAzvwvvAzv
17 2 16 spcev vAzvwvAzvwv
18 11 17 sylbi zAwvAzvwv
19 10 18 impbii wvAzvwvzA
20 3 5 19 3bitri zdom˙zA
21 20 eqriv dom˙=A