| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prtlem13.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
| 2 |
|
vex |
⊢ 𝑧 ∈ V |
| 3 |
2
|
eldm |
⊢ ( 𝑧 ∈ dom ∼ ↔ ∃ 𝑤 𝑧 ∼ 𝑤 ) |
| 4 |
1
|
prtlem13 |
⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑤 𝑧 ∼ 𝑤 ↔ ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 6 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 8 |
7
|
adantrr |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑧 ∈ ∪ 𝐴 ) |
| 9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 11 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) |
| 12 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣 ) ) |
| 13 |
12
|
anbi2d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) ) |
| 14 |
|
pm4.24 |
⊢ ( 𝑧 ∈ 𝑣 ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
| 15 |
13 14
|
bitr4di |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ 𝑧 ∈ 𝑣 ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) ) |
| 17 |
2 16
|
spcev |
⊢ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 18 |
11 17
|
sylbi |
⊢ ( 𝑧 ∈ ∪ 𝐴 → ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 19 |
10 18
|
impbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ 𝑧 ∈ ∪ 𝐴 ) |
| 20 |
3 5 19
|
3bitri |
⊢ ( 𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴 ) |
| 21 |
20
|
eqriv |
⊢ dom ∼ = ∪ 𝐴 |