Metamath Proof Explorer


Theorem prtlem16

Description: Lemma for prtex , prter2 and prter3 . (Contributed by Rodolfo Medina, 14-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem13.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
Assertion prtlem16 dom = 𝐴

Proof

Step Hyp Ref Expression
1 prtlem13.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
2 vex 𝑧 ∈ V
3 2 eldm ( 𝑧 ∈ dom ↔ ∃ 𝑤 𝑧 𝑤 )
4 1 prtlem13 ( 𝑧 𝑤 ↔ ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )
5 4 exbii ( ∃ 𝑤 𝑧 𝑤 ↔ ∃ 𝑤𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )
6 elunii ( ( 𝑧𝑣𝑣𝐴 ) → 𝑧 𝐴 )
7 6 ancoms ( ( 𝑣𝐴𝑧𝑣 ) → 𝑧 𝐴 )
8 7 adantrr ( ( 𝑣𝐴 ∧ ( 𝑧𝑣𝑤𝑣 ) ) → 𝑧 𝐴 )
9 8 rexlimiva ( ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) → 𝑧 𝐴 )
10 9 exlimiv ( ∃ 𝑤𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) → 𝑧 𝐴 )
11 eluni2 ( 𝑧 𝐴 ↔ ∃ 𝑣𝐴 𝑧𝑣 )
12 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑣𝑧𝑣 ) )
13 12 anbi2d ( 𝑤 = 𝑧 → ( ( 𝑧𝑣𝑤𝑣 ) ↔ ( 𝑧𝑣𝑧𝑣 ) ) )
14 pm4.24 ( 𝑧𝑣 ↔ ( 𝑧𝑣𝑧𝑣 ) )
15 13 14 bitr4di ( 𝑤 = 𝑧 → ( ( 𝑧𝑣𝑤𝑣 ) ↔ 𝑧𝑣 ) )
16 15 rexbidv ( 𝑤 = 𝑧 → ( ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) ↔ ∃ 𝑣𝐴 𝑧𝑣 ) )
17 2 16 spcev ( ∃ 𝑣𝐴 𝑧𝑣 → ∃ 𝑤𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )
18 11 17 sylbi ( 𝑧 𝐴 → ∃ 𝑤𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )
19 10 18 impbii ( ∃ 𝑤𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) ↔ 𝑧 𝐴 )
20 3 5 19 3bitri ( 𝑧 ∈ dom 𝑧 𝐴 )
21 20 eqriv dom = 𝐴