Metamath Proof Explorer


Theorem prtex

Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
Assertion prtex ( Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V ) )

Proof

Step Hyp Ref Expression
1 prtlem18.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
2 1 prter1 ( Prt 𝐴 Er 𝐴 )
3 erexb ( Er 𝐴 → ( ∈ V ↔ 𝐴 ∈ V ) )
4 2 3 syl ( Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V ) )
5 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
6 4 5 bitr4di ( Prt 𝐴 → ( ∈ V ↔ 𝐴 ∈ V ) )