Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
Assertion | prtex | |- ( Prt A -> ( .~ e. _V <-> A e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
2 | 1 | prter1 | |- ( Prt A -> .~ Er U. A ) |
3 | erexb | |- ( .~ Er U. A -> ( .~ e. _V <-> U. A e. _V ) ) |
|
4 | 2 3 | syl | |- ( Prt A -> ( .~ e. _V <-> U. A e. _V ) ) |
5 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
6 | 4 5 | bitr4di | |- ( Prt A -> ( .~ e. _V <-> A e. _V ) ) |