Metamath Proof Explorer


Theorem prtex

Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1
|- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) }
Assertion prtex
|- ( Prt A -> ( .~ e. _V <-> A e. _V ) )

Proof

Step Hyp Ref Expression
1 prtlem18.1
 |-  .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) }
2 1 prter1
 |-  ( Prt A -> .~ Er U. A )
3 erexb
 |-  ( .~ Er U. A -> ( .~ e. _V <-> U. A e. _V ) )
4 2 3 syl
 |-  ( Prt A -> ( .~ e. _V <-> U. A e. _V ) )
5 uniexb
 |-  ( A e. _V <-> U. A e. _V )
6 4 5 bitr4di
 |-  ( Prt A -> ( .~ e. _V <-> A e. _V ) )