Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | uniexb | |- ( A e. _V <-> U. A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg | |- ( A e. _V -> U. A e. _V ) |
|
2 | uniexr | |- ( U. A e. _V -> A e. _V ) |
|
3 | 1 2 | impbii | |- ( A e. _V <-> U. A e. _V ) |