Step |
Hyp |
Ref |
Expression |
1 |
|
prtlem18.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
2 |
|
rexcom4 |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
3 |
|
r19.41v |
⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
5 |
2 4
|
bitri |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
6 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
7 |
6
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
8 |
|
vex |
⊢ 𝑝 ∈ V |
9 |
8
|
elqs |
⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ) |
10 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
11 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) |
12 |
11
|
anbi1i |
⊢ ( ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
14 |
10 13
|
bitri |
⊢ ( ∃ 𝑧 ∈ ∪ 𝐴 𝑝 = [ 𝑧 ] ∼ ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
15 |
9 14
|
bitri |
⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
16 |
5 7 15
|
3bitr4ri |
⊢ ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ) |
17 |
1
|
prtlem19 |
⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |
18 |
17
|
ralrimivv |
⊢ ( Prt 𝐴 → ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ ) |
19 |
|
2r19.29 |
⊢ ( ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ ∧ ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) |
20 |
19
|
ex |
⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑧 ∈ 𝑣 𝑣 = [ 𝑧 ] ∼ → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
21 |
18 20
|
syl |
⊢ ( Prt 𝐴 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑝 = [ 𝑧 ] ∼ → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
22 |
16 21
|
syl5bi |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
23 |
|
eqtr3 |
⊢ ( ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → 𝑣 = 𝑝 ) |
24 |
23
|
reximi |
⊢ ( ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) |
25 |
24
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 ( 𝑣 = [ 𝑧 ] ∼ ∧ 𝑝 = [ 𝑧 ] ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) |
26 |
22 25
|
syl6 |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ) ) |
27 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) |
28 |
|
19.41v |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) |
29 |
27 28
|
bitri |
⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 ↔ ( ∃ 𝑧 𝑧 ∈ 𝑣 ∧ 𝑣 = 𝑝 ) ) |
30 |
29
|
simprbi |
⊢ ( ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 → 𝑣 = 𝑝 ) |
31 |
30
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑧 ∈ 𝑣 𝑣 = 𝑝 → ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) |
32 |
26 31
|
syl6 |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) ) |
33 |
|
risset |
⊢ ( 𝑝 ∈ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑣 = 𝑝 ) |
34 |
32 33
|
syl6ibr |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ∈ 𝐴 ) ) |
35 |
1
|
prtlem400 |
⊢ ¬ ∅ ∈ ( ∪ 𝐴 / ∼ ) |
36 |
|
nelelne |
⊢ ( ¬ ∅ ∈ ( ∪ 𝐴 / ∼ ) → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ≠ ∅ ) ) |
37 |
35 36
|
mp1i |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ≠ ∅ ) ) |
38 |
34 37
|
jcad |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → ( 𝑝 ∈ 𝐴 ∧ 𝑝 ≠ ∅ ) ) ) |
39 |
|
eldifsn |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ≠ ∅ ) ) |
40 |
38 39
|
syl6ibr |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) → 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ) ) |
41 |
|
neldifsn |
⊢ ¬ ∅ ∈ ( 𝐴 ∖ { ∅ } ) |
42 |
|
n0el |
⊢ ( ¬ ∅ ∈ ( 𝐴 ∖ { ∅ } ) ↔ ∀ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ∃ 𝑧 𝑧 ∈ 𝑝 ) |
43 |
41 42
|
mpbi |
⊢ ∀ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ∃ 𝑧 𝑧 ∈ 𝑝 |
44 |
43
|
rspec |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → ∃ 𝑧 𝑧 ∈ 𝑝 ) |
45 |
|
eldifi |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑝 ∈ 𝐴 ) |
46 |
44 45
|
jca |
⊢ ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ) |
47 |
1
|
prtlem19 |
⊢ ( Prt 𝐴 → ( ( 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝑝 ) → 𝑝 = [ 𝑧 ] ∼ ) ) |
48 |
47
|
ancomsd |
⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 = [ 𝑧 ] ∼ ) ) |
49 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝐴 ) |
50 |
48 49
|
jca2r |
⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) ) ) |
51 |
|
prtlem11 |
⊢ ( 𝑝 ∈ V → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑝 = [ 𝑧 ] ∼ → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) ) |
52 |
51
|
elv |
⊢ ( 𝑧 ∈ ∪ 𝐴 → ( 𝑝 = [ 𝑧 ] ∼ → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝑧 ∈ ∪ 𝐴 ∧ 𝑝 = [ 𝑧 ] ∼ ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) |
54 |
50 53
|
syl6 |
⊢ ( Prt 𝐴 → ( ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
55 |
54
|
eximdv |
⊢ ( Prt 𝐴 → ( ∃ 𝑧 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑧 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
56 |
|
19.41v |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) ) |
57 |
|
19.9v |
⊢ ( ∃ 𝑧 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) |
58 |
55 56 57
|
3imtr3g |
⊢ ( Prt 𝐴 → ( ( ∃ 𝑧 𝑧 ∈ 𝑝 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
59 |
46 58
|
syl5 |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ) ) |
60 |
40 59
|
impbid |
⊢ ( Prt 𝐴 → ( 𝑝 ∈ ( ∪ 𝐴 / ∼ ) ↔ 𝑝 ∈ ( 𝐴 ∖ { ∅ } ) ) ) |
61 |
60
|
eqrdv |
⊢ ( Prt 𝐴 → ( ∪ 𝐴 / ∼ ) = ( 𝐴 ∖ { ∅ } ) ) |