Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prtlem19 | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | 1 | prtlem18 | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤 ) ) ) |
| 3 | 2 | imp | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤 ) ) |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 4 5 | elec | ⊢ ( 𝑤 ∈ [ 𝑧 ] ∼ ↔ 𝑧 ∼ 𝑤 ) |
| 7 | 3 6 | bitr4di | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [ 𝑧 ] ∼ ) ) |
| 8 | 7 | eqrdv | ⊢ ( ( Prt 𝐴 ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 = [ 𝑧 ] ∼ ) |
| 9 | 8 | ex | ⊢ ( Prt 𝐴 → ( ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] ∼ ) ) |