Step |
Hyp |
Ref |
Expression |
1 |
|
prtlem18.1 |
|- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
2 |
1
|
prtlem18 |
|- ( Prt A -> ( ( v e. A /\ z e. v ) -> ( w e. v <-> z .~ w ) ) ) |
3 |
2
|
imp |
|- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> ( w e. v <-> z .~ w ) ) |
4 |
|
vex |
|- w e. _V |
5 |
|
vex |
|- z e. _V |
6 |
4 5
|
elec |
|- ( w e. [ z ] .~ <-> z .~ w ) |
7 |
3 6
|
bitr4di |
|- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> ( w e. v <-> w e. [ z ] .~ ) ) |
8 |
7
|
eqrdv |
|- ( ( Prt A /\ ( v e. A /\ z e. v ) ) -> v = [ z ] .~ ) |
9 |
8
|
ex |
|- ( Prt A -> ( ( v e. A /\ z e. v ) -> v = [ z ] .~ ) ) |