Step |
Hyp |
Ref |
Expression |
1 |
|
prtlem18.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
2 |
1
|
relopabiv |
⊢ Rel ∼ |
3 |
2
|
a1i |
⊢ ( Prt 𝐴 → Rel ∼ ) |
4 |
1
|
prtlem16 |
⊢ dom ∼ = ∪ 𝐴 |
5 |
4
|
a1i |
⊢ ( Prt 𝐴 → dom ∼ = ∪ 𝐴 ) |
6 |
|
prtlem15 |
⊢ ( Prt 𝐴 → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟 ) ) ) |
7 |
1
|
prtlem13 |
⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
8 |
1
|
prtlem13 |
⊢ ( 𝑤 ∼ 𝑝 ↔ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) |
9 |
7 8
|
anbi12i |
⊢ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) ↔ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) |
10 |
|
reeanv |
⊢ ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ↔ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ∃ 𝑞 ∈ 𝐴 ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) |
11 |
9 10
|
bitr4i |
⊢ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝑞 ∧ 𝑝 ∈ 𝑞 ) ) ) |
12 |
1
|
prtlem13 |
⊢ ( 𝑧 ∼ 𝑝 ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑧 ∈ 𝑟 ∧ 𝑝 ∈ 𝑟 ) ) |
13 |
6 11 12
|
3imtr4g |
⊢ ( Prt 𝐴 → ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) |
14 |
|
pm3.22 |
⊢ ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
15 |
14
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → ∃ 𝑣 ∈ 𝐴 ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
16 |
1
|
prtlem13 |
⊢ ( 𝑤 ∼ 𝑧 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ) |
17 |
15 7 16
|
3imtr4i |
⊢ ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) |
18 |
13 17
|
jctil |
⊢ ( Prt 𝐴 → ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
19 |
18
|
alrimivv |
⊢ ( Prt 𝐴 → ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
20 |
19
|
alrimiv |
⊢ ( Prt 𝐴 → ∀ 𝑧 ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) |
21 |
|
dfer2 |
⊢ ( ∼ Er ∪ 𝐴 ↔ ( Rel ∼ ∧ dom ∼ = ∪ 𝐴 ∧ ∀ 𝑧 ∀ 𝑤 ∀ 𝑝 ( ( 𝑧 ∼ 𝑤 → 𝑤 ∼ 𝑧 ) ∧ ( ( 𝑧 ∼ 𝑤 ∧ 𝑤 ∼ 𝑝 ) → 𝑧 ∼ 𝑝 ) ) ) ) |
22 |
3 5 20 21
|
syl3anbrc |
⊢ ( Prt 𝐴 → ∼ Er ∪ 𝐴 ) |