Step |
Hyp |
Ref |
Expression |
1 |
|
anabs7 |
⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) |
2 |
|
an43 |
⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) |
3 |
2
|
anbi2i |
⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
4 |
1 3 2
|
3bitr4ri |
⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) ) |
5 |
|
prtlem14 |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
6 |
|
an3 |
⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ) |
7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ) ) |
9 |
6 8
|
syl5ibr |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
10 |
5 9
|
syl8 |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) ) |
11 |
10
|
imp4a |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
12 |
4 11
|
syl7bi |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
13 |
12
|
expdimp |
⊢ ( ( Prt 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
14 |
13
|
rexlimdv |
⊢ ( ( Prt 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
15 |
14
|
reximdva |
⊢ ( Prt 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
16 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 ∈ 𝑥 ↔ 𝑢 ∈ 𝑧 ) ) |
17 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑧 ) ) |
18 |
16 17
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) ) |
19 |
18
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) |
20 |
15 19
|
syl6ib |
⊢ ( Prt 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) ) |