Step |
Hyp |
Ref |
Expression |
1 |
|
df-prt |
⊢ ( Prt 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
2 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
3 |
1 2
|
sylbi |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
4 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) |
5 |
|
eq0 |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ∀ 𝑤 ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) |
6 |
|
sp |
⊢ ( ∀ 𝑤 ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) → ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) |
7 |
5 6
|
sylbi |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ¬ 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) ) |
8 |
7
|
pm2.21d |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑤 ∈ ( 𝑥 ∩ 𝑦 ) → 𝑥 = 𝑦 ) ) |
9 |
4 8
|
syl5bir |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
10 |
9
|
jao1i |
⊢ ( ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
11 |
3 10
|
syl6 |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |