Metamath Proof Explorer


Definition df-prt

Description: Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion df-prt ( Prt 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 wprt Prt 𝐴
2 vx 𝑥
3 vy 𝑦
4 2 cv 𝑥
5 3 cv 𝑦
6 4 5 wceq 𝑥 = 𝑦
7 4 5 cin ( 𝑥𝑦 )
8 c0
9 7 8 wceq ( 𝑥𝑦 ) = ∅
10 6 9 wo ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ )
11 10 3 0 wral 𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ )
12 11 2 0 wral 𝑥𝐴𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ )
13 1 12 wb ( Prt 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) )