Description: Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-prt | |- ( Prt A <-> A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | 0 | wprt | |- Prt A |
2 | vx | |- x |
|
3 | vy | |- y |
|
4 | 2 | cv | |- x |
5 | 3 | cv | |- y |
6 | 4 5 | wceq | |- x = y |
7 | 4 5 | cin | |- ( x i^i y ) |
8 | c0 | |- (/) |
|
9 | 7 8 | wceq | |- ( x i^i y ) = (/) |
10 | 6 9 | wo | |- ( x = y \/ ( x i^i y ) = (/) ) |
11 | 10 3 0 | wral | |- A. y e. A ( x = y \/ ( x i^i y ) = (/) ) |
12 | 11 2 0 | wral | |- A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) ) |
13 | 1 12 | wb | |- ( Prt A <-> A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) ) ) |