Metamath Proof Explorer


Definition df-prt

Description: Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion df-prt
|- ( Prt A <-> A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 wprt
 |-  Prt A
2 vx
 |-  x
3 vy
 |-  y
4 2 cv
 |-  x
5 3 cv
 |-  y
6 4 5 wceq
 |-  x = y
7 4 5 cin
 |-  ( x i^i y )
8 c0
 |-  (/)
9 7 8 wceq
 |-  ( x i^i y ) = (/)
10 6 9 wo
 |-  ( x = y \/ ( x i^i y ) = (/) )
11 10 3 0 wral
 |-  A. y e. A ( x = y \/ ( x i^i y ) = (/) )
12 11 2 0 wral
 |-  A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) )
13 1 12 wb
 |-  ( Prt A <-> A. x e. A A. y e. A ( x = y \/ ( x i^i y ) = (/) ) )