Metamath Proof Explorer


Theorem erprt

Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion erprt ( Er 𝑋 → Prt ( 𝐴 / ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ) ∧ 𝑦 ∈ ( 𝐴 / ) ) ) → Er 𝑋 )
2 simprl ( ( Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ) ∧ 𝑦 ∈ ( 𝐴 / ) ) ) → 𝑥 ∈ ( 𝐴 / ) )
3 simprr ( ( Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ) ∧ 𝑦 ∈ ( 𝐴 / ) ) ) → 𝑦 ∈ ( 𝐴 / ) )
4 1 2 3 qsdisj ( ( Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / ) ∧ 𝑦 ∈ ( 𝐴 / ) ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) )
5 4 ralrimivva ( Er 𝑋 → ∀ 𝑥 ∈ ( 𝐴 / ) ∀ 𝑦 ∈ ( 𝐴 / ) ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) )
6 df-prt ( Prt ( 𝐴 / ) ↔ ∀ 𝑥 ∈ ( 𝐴 / ) ∀ 𝑦 ∈ ( 𝐴 / ) ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) )
7 5 6 sylibr ( Er 𝑋 → Prt ( 𝐴 / ) )