| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( (  ∼   Er  𝑋  ∧  ( 𝑥  ∈  ( 𝐴  /   ∼  )  ∧  𝑦  ∈  ( 𝐴  /   ∼  ) ) )  →   ∼   Er  𝑋 ) | 
						
							| 2 |  | simprl | ⊢ ( (  ∼   Er  𝑋  ∧  ( 𝑥  ∈  ( 𝐴  /   ∼  )  ∧  𝑦  ∈  ( 𝐴  /   ∼  ) ) )  →  𝑥  ∈  ( 𝐴  /   ∼  ) ) | 
						
							| 3 |  | simprr | ⊢ ( (  ∼   Er  𝑋  ∧  ( 𝑥  ∈  ( 𝐴  /   ∼  )  ∧  𝑦  ∈  ( 𝐴  /   ∼  ) ) )  →  𝑦  ∈  ( 𝐴  /   ∼  ) ) | 
						
							| 4 | 1 2 3 | qsdisj | ⊢ ( (  ∼   Er  𝑋  ∧  ( 𝑥  ∈  ( 𝐴  /   ∼  )  ∧  𝑦  ∈  ( 𝐴  /   ∼  ) ) )  →  ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 5 | 4 | ralrimivva | ⊢ (  ∼   Er  𝑋  →  ∀ 𝑥  ∈  ( 𝐴  /   ∼  ) ∀ 𝑦  ∈  ( 𝐴  /   ∼  ) ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 6 |  | df-prt | ⊢ ( Prt  ( 𝐴  /   ∼  )  ↔  ∀ 𝑥  ∈  ( 𝐴  /   ∼  ) ∀ 𝑦  ∈  ( 𝐴  /   ∼  ) ( 𝑥  =  𝑦  ∨  ( 𝑥  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ (  ∼   Er  𝑋  →  Prt  ( 𝐴  /   ∼  ) ) |