Metamath Proof Explorer


Theorem erprt

Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion erprt ˙ Er X Prt A / ˙

Proof

Step Hyp Ref Expression
1 simpl ˙ Er X x A / ˙ y A / ˙ ˙ Er X
2 simprl ˙ Er X x A / ˙ y A / ˙ x A / ˙
3 simprr ˙ Er X x A / ˙ y A / ˙ y A / ˙
4 1 2 3 qsdisj ˙ Er X x A / ˙ y A / ˙ x = y x y =
5 4 ralrimivva ˙ Er X x A / ˙ y A / ˙ x = y x y =
6 df-prt Prt A / ˙ x A / ˙ y A / ˙ x = y x y =
7 5 6 sylibr ˙ Er X Prt A / ˙