Metamath Proof Explorer
		
		
		
		Description:  Rearrangement of 4 conjuncts.  (Contributed by Rodolfo Medina, 24-Sep-2010)  (Proof shortened by Andrew Salmon, 29-Jun-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					an43 | 
					⊢  ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜒  ∧  𝜃 ) )  ↔  ( ( 𝜑  ∧  𝜃 )  ∧  ( 𝜓  ∧  𝜒 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							an42 | 
							⊢ ( ( ( 𝜑  ∧  𝜃 )  ∧  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜒  ∧  𝜃 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							bicomi | 
							⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝜒  ∧  𝜃 ) )  ↔  ( ( 𝜑  ∧  𝜃 )  ∧  ( 𝜓  ∧  𝜒 ) ) )  |