Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 17-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | anabs7 | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
2 | 1 | pm4.71ri | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
3 | 2 | bicomi | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ 𝜓 ) ) |