Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) ) |
2 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝐴 ) ) |
3 |
|
prtlem14 |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
4 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) |
5 |
4
|
biimprd |
⊢ ( 𝑥 = 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) |
6 |
3 5
|
syl8 |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) ) ) |
7 |
6
|
exp4a |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ∈ 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) ) ) ) |
8 |
7
|
impd |
⊢ ( Prt 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) ) ) |
9 |
2 8
|
syl5bir |
⊢ ( Prt 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) ) ) |
10 |
9
|
expd |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ 𝑦 → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑥 ) ) ) ) ) |
11 |
10
|
imp5a |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑥 ) ) ) ) |
12 |
11
|
imp4b |
⊢ ( ( Prt 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑤 ∈ 𝑥 ) ) |
13 |
12
|
exlimdv |
⊢ ( ( Prt 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑤 ∈ 𝑥 ) ) |
14 |
1 13
|
syl5bi |
⊢ ( ( Prt 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑥 ) ) |
15 |
14
|
ex |
⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑥 ) ) ) |