Metamath Proof Explorer


Theorem prtlem17

Description: Lemma for prter2 . (Contributed by Rodolfo Medina, 15-Oct-2010)

Ref Expression
Assertion prtlem17 ( Prt 𝐴 → ( ( 𝑥𝐴𝑧𝑥 ) → ( ∃ 𝑦𝐴 ( 𝑧𝑦𝑤𝑦 ) → 𝑤𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑦𝐴 ( 𝑧𝑦𝑤𝑦 ) ↔ ∃ 𝑦 ( 𝑦𝐴 ∧ ( 𝑧𝑦𝑤𝑦 ) ) )
2 an32 ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑧𝑥 ) ↔ ( ( 𝑥𝐴𝑧𝑥 ) ∧ 𝑦𝐴 ) )
3 prtlem14 ( Prt 𝐴 → ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) ) )
4 elequ2 ( 𝑥 = 𝑦 → ( 𝑤𝑥𝑤𝑦 ) )
5 4 biimprd ( 𝑥 = 𝑦 → ( 𝑤𝑦𝑤𝑥 ) )
6 3 5 syl8 ( Prt 𝐴 → ( ( 𝑥𝐴𝑦𝐴 ) → ( ( 𝑧𝑥𝑧𝑦 ) → ( 𝑤𝑦𝑤𝑥 ) ) ) )
7 6 exp4a ( Prt 𝐴 → ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑧𝑥 → ( 𝑧𝑦 → ( 𝑤𝑦𝑤𝑥 ) ) ) ) )
8 7 impd ( Prt 𝐴 → ( ( ( 𝑥𝐴𝑦𝐴 ) ∧ 𝑧𝑥 ) → ( 𝑧𝑦 → ( 𝑤𝑦𝑤𝑥 ) ) ) )
9 2 8 syl5bir ( Prt 𝐴 → ( ( ( 𝑥𝐴𝑧𝑥 ) ∧ 𝑦𝐴 ) → ( 𝑧𝑦 → ( 𝑤𝑦𝑤𝑥 ) ) ) )
10 9 expd ( Prt 𝐴 → ( ( 𝑥𝐴𝑧𝑥 ) → ( 𝑦𝐴 → ( 𝑧𝑦 → ( 𝑤𝑦𝑤𝑥 ) ) ) ) )
11 10 imp5a ( Prt 𝐴 → ( ( 𝑥𝐴𝑧𝑥 ) → ( 𝑦𝐴 → ( ( 𝑧𝑦𝑤𝑦 ) → 𝑤𝑥 ) ) ) )
12 11 imp4b ( ( Prt 𝐴 ∧ ( 𝑥𝐴𝑧𝑥 ) ) → ( ( 𝑦𝐴 ∧ ( 𝑧𝑦𝑤𝑦 ) ) → 𝑤𝑥 ) )
13 12 exlimdv ( ( Prt 𝐴 ∧ ( 𝑥𝐴𝑧𝑥 ) ) → ( ∃ 𝑦 ( 𝑦𝐴 ∧ ( 𝑧𝑦𝑤𝑦 ) ) → 𝑤𝑥 ) )
14 1 13 syl5bi ( ( Prt 𝐴 ∧ ( 𝑥𝐴𝑧𝑥 ) ) → ( ∃ 𝑦𝐴 ( 𝑧𝑦𝑤𝑦 ) → 𝑤𝑥 ) )
15 14 ex ( Prt 𝐴 → ( ( 𝑥𝐴𝑧𝑥 ) → ( ∃ 𝑦𝐴 ( 𝑧𝑦𝑤𝑦 ) → 𝑤𝑥 ) ) )