Metamath Proof Explorer


Theorem prter1

Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙ = x y | u A x u y u
Assertion prter1 Prt A ˙ Er A

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙ = x y | u A x u y u
2 1 relopabiv Rel ˙
3 2 a1i Prt A Rel ˙
4 1 prtlem16 dom ˙ = A
5 4 a1i Prt A dom ˙ = A
6 prtlem15 Prt A v A q A z v w v w q p q r A z r p r
7 1 prtlem13 z ˙ w v A z v w v
8 1 prtlem13 w ˙ p q A w q p q
9 7 8 anbi12i z ˙ w w ˙ p v A z v w v q A w q p q
10 reeanv v A q A z v w v w q p q v A z v w v q A w q p q
11 9 10 bitr4i z ˙ w w ˙ p v A q A z v w v w q p q
12 1 prtlem13 z ˙ p r A z r p r
13 6 11 12 3imtr4g Prt A z ˙ w w ˙ p z ˙ p
14 pm3.22 z v w v w v z v
15 14 reximi v A z v w v v A w v z v
16 1 prtlem13 w ˙ z v A w v z v
17 15 7 16 3imtr4i z ˙ w w ˙ z
18 13 17 jctil Prt A z ˙ w w ˙ z z ˙ w w ˙ p z ˙ p
19 18 alrimivv Prt A w p z ˙ w w ˙ z z ˙ w w ˙ p z ˙ p
20 19 alrimiv Prt A z w p z ˙ w w ˙ z z ˙ w w ˙ p z ˙ p
21 dfer2 ˙ Er A Rel ˙ dom ˙ = A z w p z ˙ w w ˙ z z ˙ w w ˙ p z ˙ p
22 3 5 20 21 syl3anbrc Prt A ˙ Er A