Metamath Proof Explorer


Theorem prter1

Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem18.1 ˙=xy|uAxuyu
Assertion prter1 PrtA˙ErA

Proof

Step Hyp Ref Expression
1 prtlem18.1 ˙=xy|uAxuyu
2 1 relopabiv Rel˙
3 2 a1i PrtARel˙
4 1 prtlem16 dom˙=A
5 4 a1i PrtAdom˙=A
6 prtlem15 PrtAvAqAzvwvwqpqrAzrpr
7 1 prtlem13 z˙wvAzvwv
8 1 prtlem13 w˙pqAwqpq
9 7 8 anbi12i z˙ww˙pvAzvwvqAwqpq
10 reeanv vAqAzvwvwqpqvAzvwvqAwqpq
11 9 10 bitr4i z˙ww˙pvAqAzvwvwqpq
12 1 prtlem13 z˙prAzrpr
13 6 11 12 3imtr4g PrtAz˙ww˙pz˙p
14 pm3.22 zvwvwvzv
15 14 reximi vAzvwvvAwvzv
16 1 prtlem13 w˙zvAwvzv
17 15 7 16 3imtr4i z˙ww˙z
18 13 17 jctil PrtAz˙ww˙zz˙ww˙pz˙p
19 18 alrimivv PrtAwpz˙ww˙zz˙ww˙pz˙p
20 19 alrimiv PrtAzwpz˙ww˙zz˙ww˙pz˙p
21 dfer2 ˙ErARel˙dom˙=Azwpz˙ww˙zz˙ww˙pz˙p
22 3 5 20 21 syl3anbrc PrtA˙ErA