Metamath Proof Explorer


Theorem prtlem13

Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem13.1 ˙ = x y | u A x u y u
Assertion prtlem13 z ˙ w v A z v w v

Proof

Step Hyp Ref Expression
1 prtlem13.1 ˙ = x y | u A x u y u
2 vex z V
3 vex w V
4 elequ2 u = v x u x v
5 elequ2 u = v y u y v
6 4 5 anbi12d u = v x u y u x v y v
7 6 cbvrexvw u A x u y u v A x v y v
8 elequ1 x = z x v z v
9 elequ1 y = w y v w v
10 8 9 bi2anan9 x = z y = w x v y v z v w v
11 10 rexbidv x = z y = w v A x v y v v A z v w v
12 7 11 syl5bb x = z y = w u A x u y u v A z v w v
13 2 3 12 1 braba z ˙ w v A z v w v