Step |
Hyp |
Ref |
Expression |
1 |
|
prtlem13.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
|
vex |
⊢ 𝑤 ∈ V |
4 |
|
elequ2 |
⊢ ( 𝑢 = 𝑣 → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ 𝑣 ) ) |
5 |
|
elequ2 |
⊢ ( 𝑢 = 𝑣 → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ 𝑣 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ) ) |
7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ) |
8 |
|
elequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣 ) ) |
9 |
|
elequ1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑣 ↔ 𝑤 ∈ 𝑣 ) ) |
10 |
8 9
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑥 ∈ 𝑣 ∧ 𝑦 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
12 |
7 11
|
syl5bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
13 |
2 3 12 1
|
braba |
⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |