Metamath Proof Explorer


Theorem prtlem13

Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis prtlem13.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
Assertion prtlem13 ( 𝑧 𝑤 ↔ ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )

Proof

Step Hyp Ref Expression
1 prtlem13.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) }
2 vex 𝑧 ∈ V
3 vex 𝑤 ∈ V
4 elequ2 ( 𝑢 = 𝑣 → ( 𝑥𝑢𝑥𝑣 ) )
5 elequ2 ( 𝑢 = 𝑣 → ( 𝑦𝑢𝑦𝑣 ) )
6 4 5 anbi12d ( 𝑢 = 𝑣 → ( ( 𝑥𝑢𝑦𝑢 ) ↔ ( 𝑥𝑣𝑦𝑣 ) ) )
7 6 cbvrexvw ( ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) ↔ ∃ 𝑣𝐴 ( 𝑥𝑣𝑦𝑣 ) )
8 elequ1 ( 𝑥 = 𝑧 → ( 𝑥𝑣𝑧𝑣 ) )
9 elequ1 ( 𝑦 = 𝑤 → ( 𝑦𝑣𝑤𝑣 ) )
10 8 9 bi2anan9 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥𝑣𝑦𝑣 ) ↔ ( 𝑧𝑣𝑤𝑣 ) ) )
11 10 rexbidv ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ∃ 𝑣𝐴 ( 𝑥𝑣𝑦𝑣 ) ↔ ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) ) )
12 7 11 syl5bb ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ∃ 𝑢𝐴 ( 𝑥𝑢𝑦𝑢 ) ↔ ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) ) )
13 2 3 12 1 braba ( 𝑧 𝑤 ↔ ∃ 𝑣𝐴 ( 𝑧𝑣𝑤𝑣 ) )