Metamath Proof Explorer


Theorem jca2r

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypotheses jca2r.1 ( 𝜑 → ( 𝜓𝜒 ) )
jca2r.2 ( 𝜓𝜃 )
Assertion jca2r ( 𝜑 → ( 𝜓 → ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 jca2r.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 jca2r.2 ( 𝜓𝜃 )
3 2 a1i ( 𝜑 → ( 𝜓𝜃 ) )
4 3 1 jcad ( 𝜑 → ( 𝜓 → ( 𝜃𝜒 ) ) )