Metamath Proof Explorer


Theorem jca2r

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypotheses jca2r.1 φ ψ χ
jca2r.2 ψ θ
Assertion jca2r φ ψ θ χ

Proof

Step Hyp Ref Expression
1 jca2r.1 φ ψ χ
2 jca2r.2 ψ θ
3 2 a1i φ ψ θ
4 3 1 jcad φ ψ θ χ