Metamath Proof Explorer


Theorem jca2r

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010)

Ref Expression
Hypotheses jca2r.1
|- ( ph -> ( ps -> ch ) )
jca2r.2
|- ( ps -> th )
Assertion jca2r
|- ( ph -> ( ps -> ( th /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 jca2r.1
 |-  ( ph -> ( ps -> ch ) )
2 jca2r.2
 |-  ( ps -> th )
3 2 a1i
 |-  ( ph -> ( ps -> th ) )
4 3 1 jcad
 |-  ( ph -> ( ps -> ( th /\ ch ) ) )