Metamath Proof Explorer


Theorem jca3

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010)

Ref Expression
Hypotheses jca3.1
|- ( ph -> ( ps -> ch ) )
jca3.2
|- ( th -> ta )
Assertion jca3
|- ( ph -> ( ps -> ( th -> ( ch /\ ta ) ) ) )

Proof

Step Hyp Ref Expression
1 jca3.1
 |-  ( ph -> ( ps -> ch ) )
2 jca3.2
 |-  ( th -> ta )
3 1 imp
 |-  ( ( ph /\ ps ) -> ch )
4 3 a1d
 |-  ( ( ph /\ ps ) -> ( th -> ch ) )
5 4 2 jca2
 |-  ( ( ph /\ ps ) -> ( th -> ( ch /\ ta ) ) )
6 5 ex
 |-  ( ph -> ( ps -> ( th -> ( ch /\ ta ) ) ) )