Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jca3.1 | |- ( ph -> ( ps -> ch ) ) |
|
jca3.2 | |- ( th -> ta ) |
||
Assertion | jca3 | |- ( ph -> ( ps -> ( th -> ( ch /\ ta ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca3.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | jca3.2 | |- ( th -> ta ) |
|
3 | 1 | imp | |- ( ( ph /\ ps ) -> ch ) |
4 | 3 | a1d | |- ( ( ph /\ ps ) -> ( th -> ch ) ) |
5 | 4 2 | jca2 | |- ( ( ph /\ ps ) -> ( th -> ( ch /\ ta ) ) ) |
6 | 5 | ex | |- ( ph -> ( ps -> ( th -> ( ch /\ ta ) ) ) ) |