| Step |
Hyp |
Ref |
Expression |
| 1 |
|
anass |
|- ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 2 |
1
|
anbi1i |
|- ( ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 3 |
|
anandi |
|- ( ( ph /\ ( ps /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ th ) ) ) |
| 4 |
3
|
anbi1i |
|- ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) ) |
| 5 |
4
|
anbi1i |
|- ( ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) ) |
| 6 |
|
anass |
|- ( ( ( ph /\ ( ps /\ et ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ph /\ ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
| 7 |
|
anass |
|- ( ( ( ph /\ ps ) /\ et ) <-> ( ph /\ ( ps /\ et ) ) ) |
| 8 |
7
|
anbi1i |
|- ( ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( ph /\ ( ps /\ et ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 9 |
|
ancom |
|- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ph /\ ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
| 10 |
6 8 9
|
3bitr4ri |
|- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 11 |
|
ancom |
|- ( ( ( ph /\ ps ) /\ et ) <-> ( et /\ ( ph /\ ps ) ) ) |
| 12 |
11
|
anbi1i |
|- ( ( ( ( ph /\ ps ) /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 13 |
|
anass |
|- ( ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( et /\ ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) ) |
| 14 |
|
ancom |
|- ( ( et /\ ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 15 |
13 14
|
bitri |
|- ( ( ( et /\ ( ph /\ ps ) ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 16 |
10 12 15
|
3bitri |
|- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ps ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 17 |
2 5 16
|
3bitr4ri |
|- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) ) |
| 18 |
|
anass |
|- ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) ) |
| 19 |
18
|
anbi1i |
|- ( ( ( ( ph /\ ( ps /\ th ) ) /\ ( ch /\ ta ) ) /\ et ) <-> ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) ) |
| 20 |
|
an4 |
|- ( ( ( ps /\ th ) /\ ( ch /\ ta ) ) <-> ( ( ps /\ ch ) /\ ( th /\ ta ) ) ) |
| 21 |
|
anass |
|- ( ( ( ps /\ ch ) /\ ( th /\ ta ) ) <-> ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) |
| 22 |
20 21
|
bitri |
|- ( ( ( ps /\ th ) /\ ( ch /\ ta ) ) <-> ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) |
| 23 |
22
|
anbi2i |
|- ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) <-> ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) ) |
| 24 |
23
|
anbi1i |
|- ( ( ( ph /\ ( ( ps /\ th ) /\ ( ch /\ ta ) ) ) /\ et ) <-> ( ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) /\ et ) ) |
| 25 |
17 19 24
|
3bitri |
|- ( ( ( ( ps /\ et ) /\ ( ( ph /\ th ) /\ ( ch /\ ta ) ) ) /\ ph ) <-> ( ( ph /\ ( ps /\ ( ch /\ ( th /\ ta ) ) ) ) /\ et ) ) |