Metamath Proof Explorer


Theorem jca3

Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010)

Ref Expression
Hypotheses jca3.1 φ ψ χ
jca3.2 θ τ
Assertion jca3 φ ψ θ χ τ

Proof

Step Hyp Ref Expression
1 jca3.1 φ ψ χ
2 jca3.2 θ τ
3 1 imp φ ψ χ
4 3 a1d φ ψ θ χ
5 4 2 jca2 φ ψ θ χ τ
6 5 ex φ ψ θ χ τ