Metamath Proof Explorer


Theorem rexcom4

Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019)

Ref Expression
Assertion rexcom4 ( ∃ 𝑥𝐴𝑦 𝜑 ↔ ∃ 𝑦𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 exdistr ( ∃ 𝑥𝑦 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦 𝜑 ) )
2 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
3 2 exbii ( ∃ 𝑦𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑥 ( 𝑥𝐴𝜑 ) )
4 excom ( ∃ 𝑦𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥𝑦 ( 𝑥𝐴𝜑 ) )
5 3 4 bitri ( ∃ 𝑦𝑥𝐴 𝜑 ↔ ∃ 𝑥𝑦 ( 𝑥𝐴𝜑 ) )
6 df-rex ( ∃ 𝑥𝐴𝑦 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦 𝜑 ) )
7 1 5 6 3bitr4ri ( ∃ 𝑥𝐴𝑦 𝜑 ↔ ∃ 𝑦𝑥𝐴 𝜑 )