Metamath Proof Explorer


Theorem rexcom4

Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019)

Ref Expression
Assertion rexcom4 xAyφyxAφ

Proof

Step Hyp Ref Expression
1 exdistr xyxAφxxAyφ
2 df-rex xAφxxAφ
3 2 exbii yxAφyxxAφ
4 excom yxxAφxyxAφ
5 3 4 bitri yxAφxyxAφ
6 df-rex xAyφxxAyφ
7 1 5 6 3bitr4ri xAyφyxAφ