| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 2 |
|
df-ex |
⊢ ( ∃ 𝑢 𝑢 ∈ 𝑥 ↔ ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑢 𝑢 ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) |
| 4 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 5 |
|
imnang |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ↔ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 6 |
|
0el |
⊢ ( ∅ ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) |
| 7 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ∅ ∈ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 9 |
8
|
notbii |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 10 |
4 5 9
|
3bitr4ri |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑢 ¬ 𝑢 ∈ 𝑥 ) ) |
| 11 |
1 3 10
|
3bitr4ri |
⊢ ( ¬ ∅ ∈ 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑢 𝑢 ∈ 𝑥 ) |