Metamath Proof Explorer


Theorem n0el

Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion n0el ¬AxAuux

Proof

Step Hyp Ref Expression
1 df-ral xA¬u¬uxxxA¬u¬ux
2 df-ex uux¬u¬ux
3 2 ralbii xAuuxxA¬u¬ux
4 alnex x¬xAu¬ux¬xxAu¬ux
5 imnang xxA¬u¬uxx¬xAu¬ux
6 0el AxAu¬ux
7 df-rex xAu¬uxxxAu¬ux
8 6 7 bitri AxxAu¬ux
9 8 notbii ¬A¬xxAu¬ux
10 4 5 9 3bitr4ri ¬AxxA¬u¬ux
11 1 3 10 3bitr4ri ¬AxAuux