Metamath Proof Explorer


Theorem elqs

Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypothesis elqs.1 BV
Assertion elqs BA/RxAB=xR

Proof

Step Hyp Ref Expression
1 elqs.1 BV
2 elqsg BVBA/RxAB=xR
3 1 2 ax-mp BA/RxAB=xR