Metamath Proof Explorer


Theorem prtlem9

Description: Lemma for prter3 . (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion prtlem9
|- ( A e. B -> E. x e. B [ x ] .~ = [ A ] .~ )

Proof

Step Hyp Ref Expression
1 risset
 |-  ( A e. B <-> E. x e. B x = A )
2 eceq1
 |-  ( x = A -> [ x ] .~ = [ A ] .~ )
3 2 reximi
 |-  ( E. x e. B x = A -> E. x e. B [ x ] .~ = [ A ] .~ )
4 1 3 sylbi
 |-  ( A e. B -> E. x e. B [ x ] .~ = [ A ] .~ )