Metamath Proof Explorer


Theorem iedgval0

Description: Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020)

Ref Expression
Assertion iedgval0 iEdg=

Proof

Step Hyp Ref Expression
1 0nelxp ¬V×V
2 1 iffalsei ifV×V2ndef=ef
3 iedgval iEdg=ifV×V2ndef
4 edgfid ef=Slotefndx
5 4 str0 =ef
6 2 3 5 3eqtr4i iEdg=