Metamath Proof Explorer


Theorem iedgval0

Description: Degenerated case 1 for edges: The set of indexed edges of the empty set is the empty set. (Contributed by AV, 24-Sep-2020)

Ref Expression
Assertion iedgval0 iEdg =

Proof

Step Hyp Ref Expression
1 0nelxp ¬ V × V
2 1 iffalsei if V × V 2 nd ef = ef
3 iedgval iEdg = if V × V 2 nd ef
4 edgfid ef = Slot ef ndx
5 4 str0 = ef
6 2 3 5 3eqtr4i iEdg =