Metamath Proof Explorer


Theorem ifcl

Description: Membership (closure) of a conditional operator. (Contributed by NM, 4-Apr-2005)

Ref Expression
Assertion ifcl ACBCifφABC

Proof

Step Hyp Ref Expression
1 eleq1 A=ifφABACifφABC
2 eleq1 B=ifφABBCifφABC
3 1 2 ifboth ACBCifφABC