Metamath Proof Explorer


Theorem ifeq1

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq1 A=BifφAC=ifφBC

Proof

Step Hyp Ref Expression
1 rabeq A=BxA|φ=xB|φ
2 1 uneq1d A=BxA|φxC|¬φ=xB|φxC|¬φ
3 dfif6 ifφAC=xA|φxC|¬φ
4 dfif6 ifφBC=xB|φxC|¬φ
5 2 3 4 3eqtr4g A=BifφAC=ifφBC