Metamath Proof Explorer


Theorem ifeq12

Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004)

Ref Expression
Assertion ifeq12 A=BC=DifφAC=ifφBD

Proof

Step Hyp Ref Expression
1 ifeq1 A=BifφAC=ifφBC
2 ifeq2 C=DifφBC=ifφBD
3 1 2 sylan9eq A=BC=DifφAC=ifφBD