Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifeq1 | ⊢ ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) ) | |
| 2 | ifeq2 | ⊢ ( 𝐶 = 𝐷 → if ( 𝜑 , 𝐵 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) | |
| 3 | 1 2 | sylan9eq | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) |