Metamath Proof Explorer


Theorem ifexd

Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses ifexd.1 φAV
ifexd.2 φBW
Assertion ifexd φifψABV

Proof

Step Hyp Ref Expression
1 ifexd.1 φAV
2 ifexd.2 φBW
3 1 elexd φAV
4 2 elexd φBV
5 3 4 ifcld φifψABV