Metamath Proof Explorer


Theorem iinconst

Description: Indexed intersection of a constant class, i.e. where B does not depend on x . (Contributed by Mario Carneiro, 6-Feb-2015)

Ref Expression
Assertion iinconst AxAB=B

Proof

Step Hyp Ref Expression
1 eliin yVyxABxAyB
2 1 elv yxABxAyB
3 r19.3rzv AyBxAyB
4 2 3 bitr4id AyxAByB
5 4 eqrdv AxAB=B