Metamath Proof Explorer


Theorem iinrab

Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011)

Ref Expression
Assertion iinrab AxAyB|φ=yB|xAφ

Proof

Step Hyp Ref Expression
1 r19.28zv AxAyBφyBxAφ
2 1 abbidv Ay|xAyBφ=y|yBxAφ
3 df-rab yB|φ=y|yBφ
4 3 a1i xAyB|φ=y|yBφ
5 4 iineq2i xAyB|φ=xAy|yBφ
6 iinab xAy|yBφ=y|xAyBφ
7 5 6 eqtri xAyB|φ=y|xAyBφ
8 df-rab yB|xAφ=y|yBxAφ
9 2 7 8 3eqtr4g AxAyB|φ=yB|xAφ