Metamath Proof Explorer


Theorem iinuni

Description: A relationship involving union and indexed intersection. Exercise 23 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Assertion iinuni AB=xBAx

Proof

Step Hyp Ref Expression
1 r19.32v xByAyxyAxByx
2 elun yAxyAyx
3 2 ralbii xByAxxByAyx
4 vex yV
5 4 elint2 yBxByx
6 5 orbi2i yAyByAxByx
7 1 3 6 3bitr4ri yAyBxByAx
8 7 abbii y|yAyB=y|xByAx
9 df-un AB=y|yAyB
10 df-iin xBAx=y|xByAx
11 8 9 10 3eqtr4i AB=xBAx