Metamath Proof Explorer


Theorem imasaddfn

Description: The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses imasaddf.f φF:VontoB
imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
imasaddf.u φU=F𝑠R
imasaddf.v φV=BaseR
imasaddf.r φRZ
imasaddf.p ·˙=+R
imasaddf.a ˙=+U
Assertion imasaddfn φ˙FnB×B

Proof

Step Hyp Ref Expression
1 imasaddf.f φF:VontoB
2 imasaddf.e φaVbVpVqVFa=FpFb=FqFa·˙b=Fp·˙q
3 imasaddf.u φU=F𝑠R
4 imasaddf.v φV=BaseR
5 imasaddf.r φRZ
6 imasaddf.p ·˙=+R
7 imasaddf.a ˙=+U
8 3 4 1 5 6 7 imasplusg φ˙=pVqVFpFqFp·˙q
9 1 2 8 imasaddfnlem φ˙FnB×B