Metamath Proof Explorer


Theorem imbi13VD

Description: Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 is imbi13VD without virtual deductions and was automatically derived from imbi13VD .

1:: |- (. ( ph <-> ps ) ->. ( ph <-> ps ) ).
2:: |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ch <-> th ) ).
3:: |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ta <-> et ) ->. ( ta <-> et ) ).
4:2,3: |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ta <-> et ) ->. ( ( ch -> ta ) <-> ( th -> et ) ) ).
5:1,4: |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ta <-> et ) ->. ( ( ph -> ( ch -> ta ) ) <-> ( ps -> ( th -> et ) ) ) ).
6:5: |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ta <-> et ) -> ( ( ph -> ( ch -> ta ) ) <-> ( ps -> ( th -> et ) ) ) ) ).
7:6: |- (. ( ph <-> ps ) ->. ( ( ch <-> th ) -> ( ( ta <-> et ) -> ( ( ph -> ( ch -> ta ) ) <-> ( ps -> ( th -> et ) ) ) ) ) ).
qed:7: |- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ta <-> et ) -> ( ( ph -> ( ch -> ta ) ) <-> ( ps -> ( th -> et ) ) ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion imbi13VD φψχθτηφχτψθη

Proof

Step Hyp Ref Expression
1 idn1 φψφψ
2 idn2 φψ,χθχθ
3 idn3 φψ,χθ,τητη
4 imbi12 χθτηχτθη
5 2 3 4 e23 φψ,χθ,τηχτθη
6 imbi12 φψχτθηφχτψθη
7 1 5 6 e13 φψ,χθ,τηφχτψθη
8 7 in3 φψ,χθτηφχτψθη
9 8 in2 φψχθτηφχτψθη
10 9 in1 φψχθτηφχτψθη