Metamath Proof Explorer


Theorem impbid21d

Description: Deduce an equivalence from two implications. (Contributed by Wolf Lammen, 12-May-2013)

Ref Expression
Hypotheses impbid21d.1 ψχθ
impbid21d.2 φθχ
Assertion impbid21d φψχθ

Proof

Step Hyp Ref Expression
1 impbid21d.1 ψχθ
2 impbid21d.2 φθχ
3 impbi χθθχχθ
4 1 2 3 syl2imc φψχθ