Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
inn0f
Next ⟩
inn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
inn0f
Description:
A nonempty intersection.
(Contributed by
Glauco Siliprandi
, 24-Dec-2020)
Ref
Expression
Hypotheses
inn0f.1
⊢
Ⅎ
_
x
A
inn0f.2
⊢
Ⅎ
_
x
B
Assertion
inn0f
⊢
A
∩
B
≠
∅
↔
∃
x
∈
A
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
inn0f.1
⊢
Ⅎ
_
x
A
2
inn0f.2
⊢
Ⅎ
_
x
B
3
elin
⊢
x
∈
A
∩
B
↔
x
∈
A
∧
x
∈
B
4
3
exbii
⊢
∃
x
x
∈
A
∩
B
↔
∃
x
x
∈
A
∧
x
∈
B
5
1
2
nfin
⊢
Ⅎ
_
x
A
∩
B
6
5
n0f
⊢
A
∩
B
≠
∅
↔
∃
x
x
∈
A
∩
B
7
df-rex
⊢
∃
x
∈
A
x
∈
B
↔
∃
x
x
∈
A
∧
x
∈
B
8
4
6
7
3bitr4i
⊢
A
∩
B
≠
∅
↔
∃
x
∈
A
x
∈
B