Metamath Proof Explorer


Theorem inn0

Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Assertion inn0 ABxAxB

Proof

Step Hyp Ref Expression
1 nfcv _xA
2 nfcv _xB
3 1 2 inn0f ABxAxB